Rational Points on Curves over Finite Fields
نویسندگان
چکیده
Preface These notes treat the problem of counting the number of rational points on a curve defined over a finite field. The notes are an extended version of an earlier set of notes Aritmetisk Algebraisk Geometri – Kurver by Johan P. Hansen [Han] on the same subject. In Chapter 1 we summarize the basic notions of algebraic geometry, especially rational points and the Riemann-Roch theorem. For the convenience of the unexperienced algebraic geometer, the chapter uses the language of classical algebraic geometry as e.g. in [Ful69]. In Appendix A the readers familiar with [Har77] may find a scheme/sheaf-theoretic formulation of Chapter 1. Moreover Appendix A contains proofs of many of the results stated in Chapter 1 without proof. In Chapter 2 we introduce the Zeta function associated to a curve defined over F q – a function containing information on the number of rational points on the curve over all finite field extensions of F q. We prove that the Zeta function is a rational function obeying a certain functional equation. Furthermore we see how the Riemann hypothesis implies the Weil bound (Corollary 2.6) on the number of rational points on the curve. When first familiar with the notions of rational functions and the Riemann-Roch theorem , Chapter 2 is rather straightforward. In contrast to this, Chapter 3 is more technical and assumes knowledge of field theory, Galois theory and the intimate relation between a smooth projective curve and its function field. Via this connection to field theory the Zeta function as defined in Chapter 2, is in the beginning of Chapter 3 put into a wider context. Afterwards we show the Riemann hypothesis for curves. In Appendix B the Weil bound (Corollary 2.6) is improved considerably. In Appendix C we give Weil's original proof of the Weil bound.
منابع مشابه
On the maximum number of rational points on singular curves over finite fields
We give a construction of singular curves with many rational points over finite fields. This construction enables us to prove some results on the maximum number of rational points on an absolutely irreducible projective algebraic curve defined over Fq of geometric genus g and arithmetic genus π.
متن کاملOn Curves over Finite Fields with Many Rational Points
We study arithmetical and geometrical properties of maximal curves, that is, curves defined over the finite field Fq2 whose number of Fq2 -rational points reachs the Hasse-Weil upper bound. Under a hypothesis on non-gaps at rational points we prove that maximal curves are Fq2 -isomorphic to y q + y = x for some m ∈ Z.
متن کاملThe family of indefinite binary quadratic forms and elliptic curves over finite fields
In this paper, we consider some properties of the family of indefinite binary quadratic forms and elliptic curves. In the first section, we give some preliminaries from binary quadratic forms and elliptic curves. In the second section, we define a special family of indefinite forms Fi and then we obtain some properties of these forms. In the third section, we consider the number of rational poi...
متن کاملThe Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields
In this work, we consider the rational points on elliptic curves over finite fields Fp. We give results concerning the number of points Np,a on the elliptic curve y ≡ x + a(mod p) according to whether a and x are quadratic residues or non-residues. We use two lemmas to prove the main results first of which gives the list of primes for which -1 is a quadratic residue, and the second is a result ...
متن کاملOn the number of rational points on curves over finite fields with many automorphisms
Using Weil descent, we give bounds for the number of rational points on two families of curves over finite fields with a large abelian group of automorphisms: Artin-Schreier curves of the form y−y = f(x) with f ∈ Fqr [x], on which the additive group Fq acts, and Kummer curves of the form y q−1 e = f(x), which have an action of the multiplicative group Fq . In both cases we can remove a √ q fact...
متن کاملLooking for Rational Curves on Cubic Hypersurfaces
The aim of these lectures is to study rational points and rational curves on varieties, mainly over finite fields Fq. We concentrate on hypersurfaces Xn of degree ≤ n+ 1 in Pn+1, especially on cubic hypersurfaces. The theorem of Chevalley–Warning (cf. Esnault’s lectures) guarantees rational points on low degree hypersurfaces over finite fields. That is, if X ⊂ Pn+1 is a hypersurface of degree ≤...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996